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a b s t r a c t

This paper proposes an algorithm for whale monitoring by passive acoustic using four short-spaced
hydrophones. It is successfully tested on the NEutrino Mediterranean Observatory – Ocean Noise Detec-
tion Experiment (NEMO ONDE) underwater acoustic platform. In past years, interest in marine mammals
has increased, leading to the development of passive acoustic methods of localization which permits to
study whales’ behavior in deep water (several hundreds of meters) without interfering with the animals.
In this paper, we propose a robust Angle of Arrival (AoA) tracking algorithm, which provides an estima-
tion of elevation and azimuth angles in spite of the short distance between hydrophones, which does not
allow direct 3D localization. Moreover we show that, in some cases, the time-delay between direct signal
and its reflection on the sea surface allows the range estimation, and thus the exact localization of the
whale. The classic AoA estimation is performed with a non-linear regression, and it is compared with a
more sophisticated algorithm, the Rao-Blackwell Monte Carlo Data Association. We demonstrate that
the second method is very robust to the presence of clutter. According to the Pavi 2009 workshop chal-
lenge, our algorithm is the only one performing relevant tracks of whale.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Processing of Marine mammal signals for passive oceanic
acoustic localization is a problem that has recently attracted atten-
tion in scientific literature. Motivation for processing marine mam-
mal acoustic signals stems from the difficulty to study animals that
spend a large amount of time underwater, and increasing interest
in the behavior of endangered species. In [6,10,5], the authors
recently developed a robust algorithm for tracking one or more
whales in space using a widely-spaced hydrophone array. Our
experiment is conducted on a real deep ocean recordings of
5 min duration from the NEMO ONDE platform using a tetrahedron
of short-spaced hydrophone array [8]. Those recordings contain
series of click sequences of sperm whales (Physeter macrocepha-
lus). Intensive work is currently done in the field [14], and would
need automatic processing like the one presented in this paper,
especially in order to extend the use of astrophysical detectors to
marine mammals’ studies [3]. The experiments in this paper con-
sist in estimating and tracking the azimuth a and elevation / of
the whale and evaluating the performance of the algorithm. In a
first time, we detect each click with a simple energy detector. In
ll rights reserved.
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a second time, identical clicks are associated in the four hydropho-
ne recordings and the Time Delay Of Arrival (TDOA) is computed
for each pair of hydrophones. Finally, the azimuth and elevation
angles (and range when possible) are estimated with a classic
method, and a particle filtering method. This last method presents
more robustness to clutter.
2. Material

We use several dataset files in wav standard, each one contain-
ing four channels, 16 bits coding, corresponding to the four hydro-
phones (H1–H4). The sampling frequency is 96 kHz. Fifteen
datasets are available and time duration for each file is 5 min. Most
datasets contain sperm whale sounds; one contains other clicks,
similar to those emitted by Cuvier’s beaked whales. These signals
were recorded in 2005 by the CIBRA,1 at 2000 m depth 25 km off-
shore Catania (Sicily, Italy), from the NEMO ONDE acoustic module,
forming a tetrahedral array about 1 m wide. Hydrophones H1, H2,
and H4 lie in the same plane at about 2.5 m from the seabed, and
H3 is placed on the top vertex at about 3.2 m from the seabed.
Fig. 1 shows the tetrahedral station configuration. The azimuth a,
x- and y-axes are relative to the array position. The z-axis origin
1 Centro Interdisciplinare di Bioacustica e Ricerche Ambientali (CIBRA), Pavia, Italy.
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Fig. 1. The NEMO ONDE array projected onto the horizontal plane with the chosen x- and y-axes. The azimuth orientation a is also presented. The z-axis origin is the sea-floor
depth, and its positive direction is toward the sea surface. The elevation / is the angle with the horizontal plane.
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is the sea-floor depth, and its positive direction is toward the sea
surface. The elevation / is 0� in the horizontal (sea-floor) plane
and its value is 90� in the vertical plane (positive from the floor
toward the surface). Our concern in this paper is the dataset 3,
which contains one emitting whale (dataset provided by the 4th
DCL workshop, recorded on August 9, 2005 at 9 am).
3. Signal filtering and source coordinates estimation

3.1. Signal filtering

A sperm whale click is a transient increase of signal energy
3–20 ms long (Fig. 2 shows the relative amplitude of the click).
The clicks are generally emitted every 1 s forming series called
trains. Each click is generally followed by its reflection on the sea
surface. New analysis algorithms are being developed to maximize
the SNR ratio and to track the movements of impulsive acoustic
sources to reveal the movement of sperm whales whilst in the
detection range. In this paper, the detection of clicks is performed
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Fig. 2. Example of signal for a single click without reflection.
with an energy detector on octave bands and an adaptative thresh-
old. Sliding 20 ms windows are used for the detection. We can
write for the energetic operator:

w ¼
XN

n¼1

sðnÞ2; ð1Þ

where w is the detection value, and s is a 20 ms window (length
N = 1920). The first octave is centered at 100 Hz. The threshold is
constant while detection occurs, but when there is no click de-
tected, it is updated in function of the value of the current window
energy (10% over the energy value of the window). This method al-
lows to adapt the threshold to both long-term and short-term vari-
ations of ocean noise level (due for instance to meteorological
conditions and engine noises, respectively) and to the decrease of
click energy when the whale signal grows fainter.

Since the hydrophones are very close one to another (a few me-
ters), only detections occurring at the same approximate time on
the four hydrophones (±5 ms) are validated and associated. Thus,
for each click detected, we obtain four times of arrival (one for each
hydrophone).

TDOAs are computed for each pair of hydrophones. Each pair
(i,j), i = 1, j = 2:4 is cross-correlated to estimate the TDOA value
TDOA(i,j) = ti � tj, where ti and tj are the times of arrival of the same
click on hydrophone i and j. Results obtained for dataset 3 are pre-
sented in the Fig. 3.

3.2. Angle of Arrival (AoA) estimation

Three-dimensional tracking of whales was previously based on
a geometric method of calculation of (x,y,z) coordinates from three
large enough TDOAs (a few seconds) recorded by a widely-spaced
hydrophone array [9]. In the present study, the short distances be-
tween hydrophones drastically reduce the TDOAs (they cannot ex-
ceed 1 ms) and prevent us from applying the same method: (x,y,z)
coordinates would be too strongly affected by the inaccuracies in
the hydrophone positions (about 5 cm) and the TDOA values
(about 0.01 ms). We therefore replace direct calculation of (x,y,z)
coordinates with an estimation the direction of the whale.



Fig. 3. Results of TDOA computation for dataset 3. As we have four hydrophones,
three TDOAs are independent. The low value (less than 1 ms) is due to the short
distance between hydrophones (a few meters). The stair shape stems from the
sampling frequency (96 kHz) which limits the TDOA precision to 0.01 ms.

Fig. 4. Range d computed during the whole dataset 3. The stair shape is due to the
low amount of s hand-labeled (a total of 20), and is different from the one
engendered by the TDOA variance.
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Estimation of the TDOA between each hydrophone pair of the
dataset allows the calculation of the click Angle of Arrival (AoA),
and the tracking of the source movements. Knowing the hydropho-
ne coordinates, the relation between the TDOA and the AoA is:

c � TDOAði; jÞ ¼ c � ðti � tjÞ ¼ ~x � HiHj

!
; ð2Þ

where c = 1500 m/s is the sound velocity, and HiHj

!
is the vector

coordinate binding the hydrophone i and j (vector coordinate Hj

!

minus vector Hi

!
), and

~x ¼ ½cosðaÞcosð/Þ; sinðaÞcosð/Þ; sinð/Þ�; ð3Þ

with k~xk ¼ 1.
Considering a constant sound speed (1500 m/s), the AoA were

finally calculated from the measured TDOA according to Eq. (2),
using a multiple non-linear regression with the Gauss-Newton
method (Levenberg–Marquardt) [9,13]. The residuals are approxi-
mated using a Chi-square distribution with Nc � d degrees of free-
dom, noted X2

Nc�d, where Nc is the number of hydrophone couples
considered and d = 3 the number of unknowns (x,y,z) coordinates.
The position is accepted if the residual is inferior to a threshold A,
that is calculated solving P ¼ probðX2

Nc�d > AÞ with P = 0.01 (we
keep 99% of the estimates).

3.3. Range estimation

In some cases, when the surface reflections are clearly associ-
ated to individual clicks, it is possible to exactly locate the animal,
i.e. to know its distance and depth, instead of having only azimuth
and elevation information. Such information is important to assess
the real detection range of the ONDE station and to improve the
tracking of the animals. Knowing the time-delay s = D/c (c is the
sound velocity) between a click and its surface reflection, we can
calculate D, the difference between the direct and reflected sound
path lengths, and then estimate the horizontal range of the whale.
Reflections are hand-labeled on a hydrophone (here we chose H1)
and the time-delays between direct clicks and reflections are com-
puted (a total of 20 delays s are labeled). Horizontal range d is also
function of the elevation /:

d ¼ ð4h2 � D2Þ � cosð/Þ
2D� 4h � sinð/Þ ; ð4Þ

where h is the depth of the hydrophone. Knowing d, /, and a, the
computation of the (x,y,z) coordinates of the whale is obvious. The
Fig. 4 is the range results from the dataset 3, after the computation
of the elevation, azimuth, and time-delays between clicks and
their surface reflection.

3.4. Review of the results and performances

In the Figs. 5 and 6, we show, respectively, the AoA and the
localization results from the dataset. The stair shape in the AoA
and the track plots is the consequence of the sampling frequency
fe which produces a uniform noise in the TDOA estimate with the

cross-correlation, with a variance equal to 1
fe
ffiffiffiffi
12
p

� �2
second. This

noise can also be observed in the TDOA plot (Fig. 3).
The confidence regions are computed for the dataset with

Monte Carlo method. The noise variance for the simulation is
1

fe
ffiffiffiffi
12
p

� �2
. The regions are only calculated for the elevation and azi-

muth. The ellipses in the Cartesian coordinates are not a concern
with the performance evaluation because of the dependency with
the range estimation, and thus it could give approximate results.
The ellipses maxima for the elevation is 1.8� and 1.6� for the azi-
muth, we can consider that this performance is good. But we
should also consider the Cramér-Rao Lower Bound given the array
configuration. Indeed, these values of elevation and azimuth per-
formance are reasonable, but this will also depend on the range
of the emitting whale. One degree of precision could be revealed
to be a huge inaccuracy in the Cartesian coordinates.
4. State optimal filtering with the RBMCDA

The question one could ask is ’What if the records produce noisy
TDOA measurement?’ To tackle this issue, a method consists in
using the Rao-Blackwellized Monte Carlo Data Association
(RBMCDA). In a nutshell, we solve the tracking part with an Ex-
tended Kalman Filter (EKF) filtering [16,11], and the data associa-
tion (whale or clutter association) with a particle filter. This can
be achieve thanks to the Rao-Blackwell theorem [4,1]. This method
has been exhaustively described in articles such [15]. Its principle
is briefly recalled below. In multiple target tracking (MTT) we are
estimating the states of several targets (whales) through measure-
ments. If we know the targets which produce each measurement
the problem reduces to single target tracking and we can use a
standard filtering algorithm (e.g. Kalman or Extended Kalman Fil-
ter) for estimating the states of the targets independently.



Fig. 5. Azimuth (top) and elevation (bottom) results from dataset 3. The AoA
variations are low, and fit with a sperm whale behavior.
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Unfortunately, such knowledge is very rarely available in practice,
and in many cases some measurements might be also due to clut-
ter, so one is forced to solve the problem of data association. After
we have associated measurements to the whale or clutter, we can
apply the standard filtering techniques for estimating the target
states. In the RBMCDA framework the whale states, data associa-
tions and the births and deaths of targets are treated as hidden sto-
chastic processes, which are observed through noisy and indirect
measurements. The joint tracking and data association is formu-
lated as a Bayesian estimation problem and the inference is done
with Sequential Monte Carlo (SMC) methods (also referred as par-
ticle filtering methods) [4,1,7], which give Monte Carlo approxima-
tions to the posterior distributions. Furthermore, the accuracy and
efficiency of the algorithm are enhanced with the application of
Rao-Blackwell algorithm, which allows us to integrate over the tar-
get states and use SMC only for estimating the data associations.

4.1. Optimal filtering of the whale states

The system model for one whale is (by discretization) in the
space of states:

xk � pðxkjxk�1Þ; ð5Þ
yk � pðykjxkÞ; ð6Þ

where xk is the whale state at step k; in our case, xk ¼ ðak;/k; _ak; _/kÞ.
yk is the measurement at step k, for example the TDOA. p(xkjxk�1) is
the dynamic model of the whale. p(ykjxk) is the conditional
measurement likelihood given the current state. The goal of optimal
filtering is to compute the estimate of the current state, using the
measurements collected until the current step, i.e., we want to com-
pute recursively the marginal posterior distribution:

pðxkjy1:kÞ: ð7Þ

The non-linear system can be express in our case:

pðxkjxk�1Þ ¼ NðxkjAk�1xk�1;Q k�1Þ; ð8Þ
pðykjxkÞ ¼ NðykjhðxkÞ;RkÞ: ð9Þ

For the linear form of this system, the common algorithm is the
Kalman filter [12]. Here we chose to use the EKF thanks to the
locally linearization. After the state estimation, it is possible to
smooth the states, by calculating the posterior marginal distribution:

pðxkjy1:TÞ; ð10Þ

where T > k. Those smoothing can be achieved with the Kalman
smoother or the Rauch–Tung-Smoother (RTS) [16,2].

4.2. RBMCDA framework with one whale and clutter

We saw that the state at time k is computed with the EKF and
then smoothed. The data association is performed with the Monte
Carlo data association. We have two associations possible, the
whale and the clutter. Birth and death of those associations are
modelized with specific distribution. The discretized dynamic
model we chose is the rectilinear movement which can be written:

xk ¼

1 0 Dt 0
0 1 0 Dt

0 0 1 0
0 0 0 1

0
BBB@

1
CCCAxk�1 þ qk�1; ð11Þ

where qk�1 is a discrete white Gaussian noise. The time step Dt can
be chosen at 5 s for example. The equation of measure is:

yk ¼ HðxkÞ þ rk; ð12Þ

where yk is the measure vector (the TDOA at step k) and rk is a
Gaussian or uniform noise. H is the measurement transfer function.
The system is solved with the RBMCDA, the state vector is com-
puted with EKF and data association is simulated.

4.3. Review of the results and performances

In the Fig. 7, we used the TDOA previously computed (Fig. 3)
and we added simulated clutter with a uniform distribution be-
tween �1.5 � 10�3 to 1.5 � 10�3s. The number of clutter for each
TDOA follows a Poisson distribution with a parameter k = 1. We
used the TDOA with the synthetic noise, and ran the RBMCDA algo-
rithm on it. The results with the RTS are in the Fig. 8. The clutter is
totally eliminated, the algorithm perfectly discriminates the
whale’s emissions association and false alarm. Moreover, the
smoother prevents the stair shape obtained with the classic regres-
sion and due to the TDOA variance. We chose not to show the
(x,y,z) localization results because the results are nearly the same,
except for the TDOA variance sensitivity that is smoothed with the
RBMCDA.

The confidence regions are not post-computed, but directly cal-
culated during the elevation and azimuth estimation. Indeed the
particle structure allows one to compute the mean and variance
of the particle clouds and gives the performance of the current esti-
mation. The value for the azimuth is 1.4� and 1.5� for the elevation.
The performance is quite the same than with the non-linear regres-
sion method.



Fig. 6. Plan view of the track (top) and diving profile (bottom). We can see two different stair shapes in the track. The first one corresponds to the largest gaps in the track
(about 20 m) and is a consequence of the range estimation about every 30 s. The constant range we consider during this time interval causes these artifacts in the track. The
second stair shape is observed in the zoomed area (underlines with a circle in the top left figure) in the figure on the top right. This is the variance in the TDOA estimates that
does not allow a better precision (which is quite good although, about 2 m). Whatsoever, the two shapes are from different causes. The mean speed is 6 km/h, and fits well the
behavior of a sperm whale.

Fig. 7. Real TDOAs with additional simulated clutter. See the Fig. 3 for the real
TDOA used to generate this figure.
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Fig. 8. Azimuth results with the RBMCDA method (bold line) compared to the
classic method results (Fig. 5) with the ‘o’ symbols.
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5. Discussion and conclusion

We defined in this article a real-time tracking algorithm to
locate clicking whale with the NEMO ONDE short-baseline plat-
form. First, two different methods are proposed to estimate the
AoA. A classic method with a non-linear regression and the
RBMCDA algorithm are compared. Moreover, thanks to the pres-
ence of reflected signal in the recordings, ranging is estimated
and a complete localization of a Physeter macrocephalus whale
in a Cartesian space is presented. The normal speed evaluated from
the trajectory is a partial validation of this experiment. To evaluate
the RBMCDA robustness to noise, we added synthetic noise in the
TDOA. The results show that the clutter and the real emissions are
well discriminated, which is not the case with the classic method
that presents some spurious azimuth and elevation results. The
confidence regions for the azimuth and elevation are about 2� for
the two methodologies with an advantage for the RBMCDA which
reduces the variance of the estimates thanks to the smoother. Our
algorithm is working for all clicking marine mammal. Future works
will consist in expanding our algorithm to several simultaneous
emitting whales in the RBMCA framework. Additional work on
the performance will have to be done, particularly with the Cramé-
r-Rao bound considering the array configuration and thus the state
observability (azimuth and elevation in our case). Also, the hydro-
phone position errors evaluation on the performance, could lead to
some inaccuracy. Finally, a validation with sightings would be the
last step to confirm the performance of the algorithm. Then it shall
be usefull for continuous online whale monitoring.
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