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Recent research has shown that reconstruction of perceived images based
on hemodynamic response as measured with functional magnetic reso-
nance imaging (fMRI) is starting to become feasible. In this letter, we ex-
plore reconstruction based on a learned hierarchy of features by employ-
ing a hierarchical generative model that consists of conditional restricted
Boltzmann machines. In an unsupervised phase, we learn a hierarchy of
features from data, and in a supervised phase, we learn how brain ac-
tivity predicts the states of those features. Reconstruction is achieved by
sampling from the model, conditioned on brain activity. We show that
by using the hierarchical generative model, we can obtain good-quality
reconstructions of visual images of handwritten digits presented during
an fMRI scanning session.

1 Introduction

Recent developments in cognitive neuroscience have shown that it is possi-
ble to infer mental state from neuroimaging data (Haxby et al., 2001; Thirion
et al., 2006; Kay, Naselaris, Prenger, & Gallant, 2008; Mitchell et al., 2008;
Miyawaki et al., 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009).
These breakthroughs in neural decoding, popularized as brain reading,
hold much promise as a new approach for studying human brain function
(see Hassabis et al., 2009; Stokes, Thompson, Cusack, & Duncan, 2009, for
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a number of examples). Decoding can be distinguished into classification,
identification, and reconstruction (Kay & Gallant, 2009). The aim of classifi-
cation is to infer to which of a small number of stimulus classes a particular
brain state belongs. The goal of identification is to determine which stim-
ulus from a candidate set of possible stimuli explains the observed brain
state. This is typically achieved by template matching, where the observed
brain state is compared with the predicted brain state of stimuli in the can-
didate set. Reconstruction, finally, uses the observed brain state in order to
reconstruct the actual stimulus rather than choosing from a class or set of
potential stimuli.

An early decoding example is the study by Haxby et al. (2001), which
showed that different stimulus categories can be classified reliably using
fMRI. More recently, Kay et al. (2008) and Mitchell et al. (2008) showed
that the identification of previously unseen stimuli by comparing predicted
hemodynamic response with measured hemodynamic response is feasible.
Thirion et al. (2006) showed that perceived or imagined contrast patterns
can be reconstructed from retinotopic information. Finally, Miyawaki et al.
(2008) and Naselaris et al. (2009) demonstrated that the reconstruction of
perceived images from measured hemodynamic response is possible by
decoding multivariate activation patterns. Note that reconstruction is much
harder than either classification or identification since it requires inference
about which stimulus (from a sheer infinite set of possible stimuli) caused
the observed brain activity. In contrast, classification and identification boils
down to the selection of one stimulus from a restricted set of possible stimuli.

In this study, our goal is to build a reconstruction model that aims to
mimic neural encoding and to invert this model in order to reconstruct
perceived stimuli from measured brain activity—in our case, hemodynamic
responses in visual cortex. An influential hypothesis about neural encoding
is the predictive coding hypothesis, which states that the brain tries to
infer the causes of its sensations (Helmholtz, 1867; Barlow, 1961; Rao &
Ballard, 1998). This principle, together with hierarchical organization as a
key organizational principle of the brain (Zeki & Shipp, 1988; Felleman &
Van Essen, 1991), suggests that the human brain may embody a hierarchical
generative model where top-down drive along the hierarchy encodes our
prior beliefs about the presence or absence of abstract causes and where
bottom-up drive along the hierarchy encodes sensory information (Lee &
Mumford, 2003; Friston, 2005).

Our reconstruction model is known as a deep belief network—a hier-
archical generative model whose building blocks are known as restricted
Boltzmann machines (Smolensky, 1986; Hinton, Osindero, & Teh, 2006)
and whose latent causes (i.e., stimulus features) are learned from data. This
approach is different from most existing reconstruction studies where re-
construction is based on predefined features (e.g., manually constructed
image patches or fixed Gabor filters). This has as an advantage that the
model can be adapted to data sets with different stimulus characteristics.
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Figure 1: The hierarchical generative model implements how latent causes h
explain sensory input v conditional on observed brain activity z. Reconstruction
proceeds by sampling from the model while clamping z. Dashed arcs represent
interactions that are used during training but are not part of the generative
model.

The work presented in Fujiwara, Miyawaki, and Kamitani (2009) is another
recent example where features are learned from data using canonical corre-
lation analysis, albeit without making use of a hierarchical architecture as
employed in this letter. The hierarchical nature of our model allows low-
level reconstructions to be influenced by complex image features. Such deep
models do more justice to the hierarchical organization of the neocortex and
should lead to improved reconstruction performance since we may benefit
from the relation between complex image features and response properties
of neurons in higher cortical areas (Hedgé & Van Essen, 2000).

We show that our hierarchical generative model is able to reconstruct
individual handwritten digits with low reconstruction error where recon-
struction quality, as determined by a behavioral experiment, improves when
the hierarchy consists of multiple layers.

2 Hierarchical Generative Model

The aim of the hierarchical generative model, shown in Figure 1, is to pro-
vide a model of the interactions between the stimulus v, latent causes h, and
brain activity z. We start from the assumption that the latent causes can be
modeled in terms of a hierarchy of processing units that detect increasingly
complex features (statistical invariances), analogous to the hierarchical or-
ganization of visual cortex (Felleman & Van Essen, 1991). The key idea
of our study is to use an unsupervised learning phase to learn the latent
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causes that best explain observed data and to use a supervised learning
phase in order to learn how observed hemodynamic response is linked to
these latent causes. The resulting hierarchical generative model captures
how brain activity arises from the invariances in our environment. Recon-
struction is achieved by sampling from the model conditional on observed
brain activity.

2.1 Unsupervised Learning Phase. In the unsupervised learning phase,
we disregard the conditional part of the model and focus only on learning
a hierarchy of features. One way to represent such a feature hierarchy is in
terms of a deep belief network (Hinton et al., 2006), which consists of smaller
modules, known as restricted Boltzmann machines. We first describe the
theory behind (restricted) Boltzmann machines and subsequently describe
how they can be used to compose a deep belief network.

A Boltzmann machine (Hinton & Sejnowski, 1983) is a network of sym-
metrically coupled units that associates a scalar energy to each state x of the
variables of interest:

p(x) = exp(−E(x))
Z

, (2.1)

where Z = ∑
x exp(−E(x)) is the partition function and E(x) = − 1

2 xT Wx −
bT x is the energy of a state with weight matrix W and bias terms b. A Boltz-
mann machine normally consists of stochastic binary (conditional Bernoulli)
units where the probability of a unit xi being active given the states of the
remaining units is given by the following Gibbs sampling update rule:

p(xi = 1 | x−i ) = σ

⎛
⎝bi +

∑
j �=i

wi j x j

⎞
⎠ , (2.2)

with sigmoid function σ (x) = (1 + exp(−x))−1.
Parameter learning becomes interesting when some of the units are vis-

ible and the remaining units are hidden: x = (v, h). The hidden units h
then act as latent variables that model distributions over the visible state
vectors v that cannot be modeled by direct pairwise interactions between
visible units. The average gradient of the log likelihood over a training set
D = {vn}N

n=1 with respect to one of the model parameters θ is then given by

E p̂

(
∂ log p(v)

∂θ

)
= Ep

(
∂ F (v)

∂θ

)
− E p̂

(
∂ F (v)

∂θ

)
, (2.3)

where p is the model distribution, p̂ is the empirical distribution, and F (v) =
− log

∑
h exp(−E(v, h)) is the free energy. Learning in Boltzmann machines
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is hard since it takes a long time to reach the equilibrium distribution and
the learning signal is noisy, as it is the difference of two sampled expecta-
tions. Fortunately, learning becomes easier when one makes use of restricted
Boltzmann machines (RBMs) (Smolensky, 1986), where interactions are re-
stricted to taking place only between visible and hidden units such that
they can be described in terms of a bipartite graph.

Learning in restricted Boltzmann machines can be carried out more ef-
ficiently using the notion of contrastive divergence (Hinton, 2002; Hinton
et al., 2006). The energy function of a restricted Boltzmann machine is
bilinear,

E(v, h) = −hT Wv − cT v − bT h, (2.4)

such that the free energy of the input can be computed efficiently using the
distributive law of probability theory:

F (v) =− log
∑

h

exp(hT Wv + cT v + bT h)

=−cT v − log
∑
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∏
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Furthermore, for a restricted Boltzmann machine, we readily obtain the
following conditionals:

p(h | v) =
∏

i

p(hi | v) =
∏

i

σ

⎛
⎝(2hi − 1)
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⎝bi +
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wi jv j
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The factorization enjoyed by RBMs brings about two benefits. First, E p̂( ∂ F (v)
∂θ

)
can be computed analytically. Second, the set of variables in (v, h) can be
sampled in two substeps in each step of a Gibbs sampling chain. We sample
h given v and then a new v given h, starting from a training example v1

(by sampling from the empirical distribution p̂), such that after k steps, we
obtain vk+1 ∼ p(v | hk). The idea of k-step contrastive divergence (CD-k)
involves an approximation that introduces some bias in the gradient. We
run the chain for only k steps to obtain the following parameter update
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after seeing an example v1,

�θ ∝ ∂ F (vk+1)
∂θ

− ∂ F (v1)
∂θ

, (2.6)

where we replaced the averages over all inputs in equation 2.3 by sin-
gle samples vk+1 and v1. Instead of sampling, it is also possible to use a
mean field approach where expected activations instead of sampled states
are propagated through the model (Welling & Hinton, 2002). We use this
strategy when sampling hidden layer activations. The average gradient is
obtained by averaging �θ over many examples. Despite the bias introduced
by these approximations, contrastive divergence works well in practice.

The feature hierarchy can be constructed by stacking restricted
Boltzmann machines on top of each other, where the output of the previous
RBM acts as input to the next RBM. The RBMs are trained using contrastive
divergence and the stacked model, known as a deep belief network (DBN),
is fine-tuned using the wake-sleep algorithm (Hinton, Dayan, Frey, & Neal,
1995; Hinton et al., 2006). The obtained model can be used to detect fea-
tures by forward propagation of activations, but it can also be interpreted
as a generative model that consists of a top-level associative memory that
can be used to generate samples y (Hinton, 2007). In other words, given a
state of the associative memory defined by the upper two layers, we can
reconstruct the input. In our experiments, we will use gray-scale images as
input to our model. One way to achieve this using stochastic binary units
is by mapping real values to binary activation probabilities (Hinton et al.,
2006). Furthermore, we will penalize large parameter values by adding a
small weight decay term to the parameter updates to avoid overfitting.

2.2 Supervised Learning Phase. In order to use a DBN for neural de-
coding, we need to condition the model on observed brain activity z during
reconstruction. One way to achieve this is to make use of conditional re-
stricted Boltzmann machines (Salakhutdinov, Mnih, & Hinton, 2007; Taylor,
Hinton, & Roweis, 2006) such that model parameters become a function of z
(Bengio, 2009). Here, we assume that the bias terms b and c become linearly
dependent on z simply by writing the energy function as

E(v, h | z) = −hT Wv − zT Cv − zT Bh . (2.7)

It is assumed that z also includes a constant to model arbitrary offsets as in
a standard RBM. It follows that the conditional free energy becomes

F (v | z) = −zT Cv −
∑

i

log
∑

hi

exp

⎛
⎝hi

⎛
⎝∑

k

bki zk +
∑

j

wi jv j

⎞
⎠

⎞
⎠ ,

(2.8)

whose derivatives can readily be computed (Taylor et al., 2006).
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Figure 2: The experimental procedure consists of three stages. During the un-
supervised learning phase, many stimuli are presented in order to learn their
latent causes. During the supervised learning phase, a small number of stimuli
are presented, together with brain activity, which was measured when subjects
observed the stimuli. Finally, a stimulus that has not been previously seen by
the model is reconstructed by sampling from the hierarchical generative model
conditional on measured brain activity.

In the supervised learning phase, we replace the restricted Boltzmann
machines that have previously been trained in the unsupervised phase by
conditional restricted Boltzmann machines. Learning proceeds as before,
but now we keep the interactions fixed and update only the bias terms
based on the observed brain activity. Essentially this allows our observa-
tions to modulate the probability that certain feature detectors are active
or inactive. In the following, we will update the bias terms only for the
top-level associative memory—the top two layers in the hierarchy.

2.3 Reconstruction. In order to reconstruct perceived stimuli, we use
the following procedure (see Figure 2). First, we learn the feature hierarchy
in an unsupervised manner using thousands of stimuli. Second, we learn in
a supervised manner how the biases are influenced by observed brain activ-
ity that is acquired while presenting a small number of stimuli. Finally, we
generate a reconstruction using the hierarchical generative model by per-
forming conditional sampling. That is, we perform one Gibbs sampling step
in the top-level associative memory conditional on brain activity and a sec-
ond unconditional Gibbs sampling step in the top-level associative memory,
and then we propagate expectations back to the input layer. Reconstruction
error between a stimulus v and its reconstruction r consisting of N pixels is
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quantified in terms of city-block distance: ε(v, r) = 1
N

∑N
i=1 |vi − ri | . In or-

der to obtain a more subjective assessment of reconstruction performance,
we asked five subjects to rate how well reconstructions match the stimuli.

3 Experiment

Stimuli consisted of 2106 handwritten gray-scale digits at a 28 × 28
pixel resolution taken from the training set of the MNIST database
(http://yann.lecun.com/exdb/mnist). We selected 1000 handwritten 6s
and 1000 handwritten 9s in order to train a hierarchical generative model
(model stimuli). This subset of the available data was found to be sufficiently
large for model estimation. Additionally, for the imaging experiment (see
below), we selected 53 handwritten 6s and 53 handwritten 9s (presentation
stimuli). The choice for these two digits was based on the consideration
that the variation within and between these two digit classes was quite
large. The former ensures that reconstruction will be nontrivial, while the
latter allows us to assess more easily if digit specific features are learned.
The model stimuli were downsampled from 28 × 28 pixel to 16 × 16 pixel
images. The presentation stimuli were scaled to fit the full visual field.

We collected 106 trials in one participant. In each trial, a handwritten 6
or 9 was presented to the subject. The character remained visible for 12.5
seconds and flickered at a rate of 6 Hz on a black background. In order to
ensure sustained attention during the entire scanning session, the subject’s
task was to maintain fixation to a fixation dot and to detect a brief (33 ms)
change in color from red to green and back occurring once and randomly
within a trial. Detection was indicated by pressing a button with the right-
hand thumb as fast as possible. Trials were separated by a 12.5 second
intertrial interval. The 106 trials were partitioned randomly into four runs
interspersed with 30 second rest periods.

Blood-oxygenation-level dependent (BOLD) sensitive functional images
were obtained by means of a Siemens 3T MRI system using a 32-channel
coil for signal reception. We used a single-shot gradient EPI sequence with a
repetition time (TR) of 2500 ms, echo time (TE) of 30 ms, and isotropic voxel
size of 2 × 2 × 2 mm. Functional images were acquired in 42 axial slices in
ascending order. A high-resolution anatomical image was acquired using
an MP-RAGE sequence (TE/TR = 3.39/2250 ms; 176 sagittal slices, with
isotropic voxel size of 1 × 1 × 1 mm).

Functional data were preprocessed and analyzed within the framework
of SPM5 (Statistical Parametric Mapping, www.fil.ion.ucl.ac.uk/spm).
Functional brain volumes were motion-corrected and coregistered with the
anatomical scan. Functional data were detrended and high-pass-filtered.
The volumes acquired 10 to 15 seconds after trial onset were averaged in
order to obtain an estimate of the steady-state response in individual voxels.
As input to our reconstruction model, we used the 1000 voxels that showed
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Figure 3: Reconstruction error as a function of the number of included voxels
(a) and as a function of the number of hidden units for models consisting of
one, two, or three hidden layers (b).

the largest difference between task and rest conditions according to a stan-
dard general linear model (GLM) analysis. As expected, the selected voxels
were almost exclusively located in the occipital lobe, which contains the
main cortical visual areas.

When training the models in the unsupervised phase, we ran the con-
trastive divergence algorithm (CD-1) followed by the wake-sleep algorithm
for both 100 iterations using a learning rate of 0.1 and a weight penalty of
0.001 on all 2000 model stimuli. One iteration consisted of a single pass
over the training data, which was partitioned into minibatches of 100 trials.
All reconstructions were computed using a leave-one-out cross-validation
scheme. For each of the 106 presentation stimuli, all 105 remaining stimuli
were used to train a model in the supervised phase by running CD-1 for
100 iterations using a small learning rate of 0.0001 and a weight penalty
of 0.001. Subsequently, a reconstruction was produced for the remaining
stimulus using Gibbs sampling as described above.

4 Results

We start by computing reconstruction error when predicting the gray value
of individual pixels directly from BOLD response. This can be interpreted
as using just the visible layer of an RBM, where gray values are taken to
be the posterior probabilities of the hidden unit activations and which is
equivalent to solving a set of independent logistic regression problems.
Figure 3a shows the decrease in reconstruction error as the number of
included voxels increases. Note the slight increase in error when all voxels
are included, possibly due to overfitting. Reconstruction error averaged
over all images based on 1000 included voxels was 0.063.
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Figure 4: Image reconstructions for the first 10 images for all different models.

We now move on to the hierarchical generative model. Our primary goal
is to determine whether adding a layer of hidden units improves the recon-
struction. Figure 3b depicts the average reconstruction error as a function of
the number of hidden units for one, two, or three hidden layers. Although
there is quite some variability in the reconstruction error, it is clear that the
reconstruction error decreases as a function of the number of hidden units.
Furthermore, models with two or three hidden layers seem to outperform
models consisting of one hidden layer. Minimum reconstruction error for
one-, two-, and three-layer models was 0.085, 0.081, and 0.082, respectively.

Note that the reconstruction error for the hierarchical generative mod-
els is larger than that of the pixel-level reconstructions. However, it is also
well known that error measures such as city-block distance do not accu-
rately capture the quality of the reconstructions as perceived by humans
and alternative metrics have been defined that try to incorporate proper-
ties of the human visual system (Wang, Bovik, Sheikh, & Simoncelli, 2004).
This is also apparent in the reconstructions shown in Figure 4. We quan-
tified the subjective experience of reconstruction performance by asking
five naive subjects to rank each of the reconstructions according to how
well they match the stimuli. The histogram in Figure 5 shows that on av-
erage, the pixel-level model and the one-layer model give less preferred
reconstructions compared to the two-layer and three-layer reconstructions.
Differences in preference among all models were significant as computed
by a Wilcoxon rank sum test (p = 0.01).

In order to gain an understanding of what invariances are represented
by our model, we can visualize the features that have been learned by the
hidden units simply by representing the elements of the weight matrix be-
longing to a hidden unit as a 16 × 16 image. The features learned in the first
layer of the hierarchical model resemble Gabor filters; that is, the features are
optimally responsive for some location, orientation, and spatial frequency
(one of these features is shown in the top left of Figure 6). Features learned
by layers higher up the hierarchy are more of a distributed nature. The hi-
erarchical generative model also allows us to probe which voxels code for
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Figure 5: Preferred order of the models determined from their reconstructions
by five naive subjects.

which feature. For example, Figure 6 shows positive and negative voxel con-
tributions to one of the feature nodes in a one-layer model. Both early visual
and lateral occipital cortex contribute to this feature. As would be expected,
activity in early visual cortex decreases the likelihood of the feature being ac-
tive, in line with the feature coding (among others) for the absence of visual
stimulation in the visual field. Involvement of the lateral occipital complex
is well in line with previous findings that this region is one of the sites
involved in the encoding of letters and letter strings (Vinckier et al., 2007).

5 Discussion

We have demonstrated that hierarchical generative models can be used to
obtain good-quality reconstructions of images based on measured hemody-
namic response. We have also shown that reconstructions obtained by deep
(multilayered) models lead to generally preferred solutions. Furthermore,
hierarchical generative models can be used to probe how individual voxels
influence the activation and deactivation of features and, as a consequence,
to learn about the neural encoding of certain stimulus characteristics. In-
spection of anatomical localization of feature voxels shows that both early
visual and lateral occipital cortex contribute to the reconstruction of digits.

Our motivation for using hierarchical generative models was twofold.
First, we wanted to learn stimulus features from data instead of using a
fixed basis set. This allows the model to adapt to the statistics of the data
at hand. This said, it may be possible to use a large data set of natural
image patches in order to learn a generic basis set that can be applied to
any data set (Lee, Grosse, Ranganath, & Ng, 2009). Second, we wanted
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Figure 6: Anatomical localization of voxels that contribute to one of the features
in a one-layer model. The corresponding feature is shown in the top left panel.
The gray blob near the calcarine sulcus represents negative parameter values,
and the gray blob in lateral occipital cortex, indicated by the arrow, represents
positive parameter values.

to use a hierarchical architecture such that complex features could also
influence reconstruction performance. Although deep models gave better
reconstructions than shallow models, there was no clear relation between
layers in the visual hierarchy and layers in the model. Voxels in early visual
cortex seemed to be most predictive for each layer in the model.

In order to assess reconstruction performance, we have used both city-
block distance, and a subjective measure of reconstruction performance. In
terms of city-block distance, pixel-level reconstructions gave the best per-
formance, whereas in terms of the subjective measure, a two-layer model
gave the best performance. The reason for this apparent contradiction is due
to the fact that city-block distance, although useful for testing convergence,
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is not an optimal measure of reconstruction performance. Reconstructions
using deep models are obtained as compositions of the individual feature
activations. Since these features have some fixed spatial layout, they may
activate pixels that were not active in the original model. Furthermore, al-
though deep models generally lead to high-quality smooth reconstructions,
they can in some cases generate a reconstruction that belongs to the wrong
stimulus class. For example, stimuli 2 and 5 in Figure 4 are erroneously
reconstructed as a 9 instead of a 6, whereas the pixel-level reconstructions
still show some correspondence with the original image. This occasional
misclassification will induce a large contribution to the city-block distance.
The subjective measure, in contrast, will be tolerant of small differences
(e.g., rotations or translations) between an original image and its recon-
struction while penalizing the nonsmooth appearance of the pixel-level
reconstructions.

In our experiment, a simple block design was used where stimuli were
presented as flashing stimuli for prolonged periods. This yielded high-
quality reconstructions because we could make use of the high signal-to-
noise ratio that is afforded by the steady-state response. At the same time,
this prohibited the presentation of a large number of stimuli and therefore
necessitated the use of a restricted stimulus set consisting of handwritten 6s
and 9s only. This also simplified the reconstruction problem since the stim-
ulus set could be modeled by a relatively small set of features. Other studies
have used more rapid designs where flashing stimuli were presented for
only brief periods (Kay et al., 2008), thus allowing the presentation of larger
and more variable stimulus sets. It remains an open question whether ac-
curate reconstruction can be obtained using our model in such settings.

We have also made use of a GLM analysis in order to identify voxels that
show significant differences between task and rest conditions. This allowed
us to reduce the number of voxels that were used as input to the model
and reduce the negative effect of overfitting. Our focus on a small subset
of voxels made the interpretation of the relation between those voxels and
the learned features difficult. Interpretation may be facilitated by including
more voxels and using regularizers that induce smoothness and sparseness
(van Gerven, Cseke, de Lange, & Heskes, 2010). Together with the use
of retinotopic mapping, this allows one to probe more accurately which
cortical areas code for which image features.

In conclusion, we have demonstrated that hierarchical generative models
can be used for neural decoding and offer a new window into the brain. If
performance could be generalized to imagined stimuli, we will come closer
to a system that is able to “read thoughts” (Kay & Gallant, 2009). There
is reason to believe that such a generalization is feasible due to the fact
that perceived and imagined stimuli can lead to similar neural activation
patterns (Roland & Gulyas, 1995; Mellet, Petit, Mazoyer, Denis, & Tzourio,
1998; Koch, 2004; Thirion, Duchesnay, Hubbard, Dubois, Poline, Lebihan,
et al., 2006; Stokes et al., 2009).
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